
Security Checklist

free EBOOK

Vibe Coding

Next Page →

Intro
Unless you’ve been living under a rock, you’ve seen the hype around vibe coding. Just tell an
LLM what you want in plain English, and it builds your app.

It’s slick. But if you’re not a pro dev, you might miss the risks until it’s too late. Vibe coding
makes it fast and easy to ship something. It also makes it fast and easy to leave your app wide
open to attacks like SQL injections, path traversal, or exposed secrets.

Some vibe coding platforms try to stay ahead of these problems. But real risks still exist. You
could even call vibe coding “ ”

Before we jump into the checklist, let’s tackle the obvious question:

Yes. Telling an LLM to write secure code does cut down on vulnerabilities. You can also ask it
to find hardcoded secrets, check that data isn’t public, scan for risky dependencies, or flag
weak input validation. These all help. You can even plug AI into scanners (like how Aikido auto-
triages alerts and suggests fixes). But don’t rely on AI alone to secure your app.

The good news? Most secure coding practices still work. Plenty of companies and open-
source projects tackle these problems. Here’s a checklist to keep your app safe while vibe
coding. It’s split into basic, advanced, and pro levels.
 

vulnerability-as-a-service.

Can’t I just ask the AI to make secure code?

ー

ド

コ

https://www.aikido.dev/blog/vibe-coding-security

Use version control

One of the pitfalls of vibe coding is when you try to add new functionality or fix a problem,

the AI doesn’t help you to get what you need and you’re left worse off than you were

before. That’s why you need version control like Git to back up your progress.

Create a .gitignore file for sensitive files

A .gitignore tells Git what to skip. Use it to keep logs and other generated files out of your

repo. These files clutter your history and might leak information that attackers can exploit.

Always ignore your .env file. It holds sensitive data like API keys and passwords that could

let someone breach your system.

Maintain a clear commit history

Keep commits small and focused. This makes it easy to spot when bugs or vulnerabilities

were introduced and to roll back changes without losing unrelated work. Use signed

commits to verify that only authorized developers (even if that’s just you) are pushing

code.

4 Separate feature, staging, and production branches

Use branches to isolate work. Build new features in separate branches to avoid pushing

unfinished or insecure code live. Move tested features to a staging branch for a final

review before merging into production. This ensures only stable, vetted code reaches your

main branch.

5 Use a secrets manager

Secrets include passwords, API tokens, encryption keys, and certificates. If you commit

them to your codebase, anyone with repo or even build log access can steal them. Always

keep secrets in environment files or a secrets manager. Scan your code to catch

mistakes. Aikido and Cursor IDE make this easy.

1

2

3

Next Page →

The basics

6 Protect yourself from DDoS attacks with CDN

A Distributed Denial-of-Service (DDoS) attack overwhelms your app with traffic, knocking
it offline. They’re common and can be costly, but also simple to block. Use a content
delivery network (CDN) like CloudFlare or CloudFront, which provide built-in DDoS
protection. Many domain hosts bundle CDNs by default.

7 Use dedicated authentication tools

Login flows, password resets, and sessions are risky to build yourself. Small mistakes can
lead to breaches. Use dedicated auth tools that enforce strong password policies, support
single sign-on, and add multi-factor authentication to protect your users and your brand.

Tools: Socket Phylum

8 Stick to trusted cryptography libraries

Crypto is notoriously hard to get right - even pros slip up. Avoid writing your own
encryption or messing with crypto flags you don’t understand. Stick to trusted libraries like
NaCL, which keep you on secure defaults.

Next Page →

Scan before you ship

from

import

if

else

 aikido

 SecurePipeline

pipeline = SecurePipeline(repo="

")

pipeline.add_step("

")

pipeline.add_step("

")

pipeline.add_step("

")

results = pipeline.run()

 results.passed:

 print("
 Safe to deploy")

:
 print("
 Issues found — check the report")

github.com/acme/app

dependency_check

static_analysis

secrets_scan

1

2

3

4

5

6

7

8

9

1
0

1
1

1
2

d dos

https://socket.dev/
https://www.phylum.io/

Set up CI/CD with security checks

A CI/CD pipeline acts like an automated assembly line for your code. Adding security steps

means every change gets checked before it ships.

Tools: SAST: tools scan your code flaws (like injection points or unsafe functions)

DAST: tools simulate attacks on your frontend—looking for open ports, risky inputs,

 or loose firewall rules.

Examples: Opensource DAST: ZAP

Opensource SAST: Opengrep

Watch your dependencies

Most of your app runs on open-source libraries. That’s your supply chain, and a single bug

in any dependency can compromise your whole app. Tools like and Trivy keep an

eye on these libraries for known vulnerabilities.

Aikido

Recommended tool: Aikido

Check for malware in dependencies

Attackers sometimes slip malware into packages that look safe. Once installed, they move

quickly. CVE databases update too slowly to catch these early.

Tools: Aikido Intel

4 Use lockfiles

Lockfiles freeze your dependency versions so builds always use the same known-good

packages. Without them, every install might pull the latest version—which could be buggy

or malicious. For example, in March 2025, attackers tampered with

, leaking CI/CD secrets through build logs. A lockfile would’ve pinned you to a safe

version.

tj-actions/changed-

files

1

2

3

More advanced

Next Page →

https://socket.dev/
https://www.phylum.io/
https://www.zaproxy.org
https://github.com/opengrep/opengrep
https://www.aikido.dev/scanners/open-source-dependency-scanning-sca
https://www.aikido.dev/scanners/open-source-dependency-scanning-sca
https://intel.aikido.dev/
https://www.stepsecurity.io/blog/harden-runner-detection-tj-actions-changed-files-action-is-compromised
https://www.stepsecurity.io/blog/harden-runner-detection-tj-actions-changed-files-action-is-compromised

5 Defend against XSS with CSP headers

Cross-site scripting (XSS) attacks inject malicious scripts into your pages. Content
Security Policy (CSP) headers let you control which scripts and resources load, blocking
many XSS attempts by default. Use Aikido to check your CSP setup.

Check if you’ve set them up correctly with Aikido

6 Deploy a WAF or RASP

A web application firewall (WAF) or Runtime Application Self-Protection (RASP) serves as
a last line of defense. They inspect incoming requests and block suspicious behavior—like
zero-day exploits, SQL injections, or weird user inputs—before they reach your app.

Recommended Tools: AWS WAF Aikido Zen

Next Page →

コ
コ ー

ー ドSecure code

ingredients
CI/CDCHECK VULNSUSE lockfileCSP headersRASP

ド

https://help.aikido.dev/en/articles/8040614-setting-up-surface-monitoring-powered-by-owasp-zap?_gl=1*1ksawh1*_gcl_aw*R0NMLjE3NDg0MzQ5MzIuQ2p3S0NBanc2TnJCQmhCNkVpd0F2blRfcmpzWVYtNEp6R2FCYjVGZGU5alNzZ293ZHRRZlZvOG1qT2FoTGRuZlpKaG1LS19XRUZaOE5Sb0NBMEFRQXZEX0J3RQ..*_gcl_au*MTk3ODE4MzI4Ni4xNzQ4NDM0ODY0LjMwNzUzMTAyMC4xNzQ4OTQxMjMyLjE3NDg5NDEyMzI.*FPAU*MTk3ODE4MzI4Ni4xNzQ4NDM0ODY0
https://aws.amazon.com/waf/
https://www.aikido.dev/zen

Harden your containers

Containers package your app and its dependencies so it runs the same anywhere. But they

still need securing: 

Update base images: Regularly pull patches or use a platform like Heroku or

 AWS Beanstalk that handles it for you.

 Scan for issues using tools like to catch vulnerabilities inside your

container layers.  

Syft Grype Trivy

 Set it up in seconds with Aikido

qqii

Restrict privileges:

Restrict privileges:

Watch EOL packages:

 Avoid running containers as root. Keeping privileges low stops

attackers from taking over your host. 

 Avoid running containers as root. Keeping privileges low stops

attackers from taking over your host. 

 Upgrade before libraries reach end of life.

 can automate this.

Aikido’s container

scanning

1

Pro

Next Page →

U p d a t e

</>
ー

}

https://github.com/anchore/syft/
https://github.com/anchore/grype/
https://github.com/aquasecurity/trivy
https://help.aikido.dev/en/collections/4358430-setting-up-docker-container-scanning
https://help.aikido.dev/en/articles/8751809-detecting-outdated-runtimes-using-aikido?_gl=1*1el4dqw*_gcl_aw*R0NMLjE3NDg0MzQ5MzIuQ2p3S0NBanc2TnJCQmhCNkVpd0F2blRfcmpzWVYtNEp6R2FCYjVGZGU5alNzZ293ZHRRZlZvOG1qT2FoTGRuZlpKaG1LS19XRUZaOE5Sb0NBMEFRQXZEX0J3RQ..*_gcl_au*MTk3ODE4MzI4Ni4xNzQ4NDM0ODY0LjMwNzUzMTAyMC4xNzQ4OTQxMjMyLjE3NDg5NDEyMzI.*FPAU*MTk3ODE4MzI4Ni4xNzQ4NDM0ODY0
https://help.aikido.dev/en/articles/8751809-detecting-outdated-runtimes-using-aikido?_gl=1*1el4dqw*_gcl_aw*R0NMLjE3NDg0MzQ5MzIuQ2p3S0NBanc2TnJCQmhCNkVpd0F2blRfcmpzWVYtNEp6R2FCYjVGZGU5alNzZ293ZHRRZlZvOG1qT2FoTGRuZlpKaG1LS19XRUZaOE5Sb0NBMEFRQXZEX0J3RQ..*_gcl_au*MTk3ODE4MzI4Ni4xNzQ4NDM0ODY0LjMwNzUzMTAyMC4xNzQ4OTQxMjMyLjE3NDg5NDEyMzI.*FPAU*MTk3ODE4MzI4Ni4xNzQ4NDM0ODY0

2 Secure your cloud accounts

Separate environments:

Use CSPM tools:

CSPM Tools:

Set budget alerts:

 Use different cloud accounts for dev, staging, and

production. It’s simpler and safer than trying to split everything with virtual networks. 

 Cloud platforms have endless options. A simple misconfig can

expose your data. Tools like Cloudsploit or AWS Inspector scan for these mistakes.  

 ,

 If attackers hijack your account for crypto mining, budget alerts

will warn you before the bills explode. Your cloud provider should offer built-in alerts

for this, or you can to check for budget concerns

and risky misconfigurations.

Aikido Cloudsploit , AWS Inspector  

Set it up in seconds with Aikido 

set up cloud scanning with Aikido

3 Test your LLMs against known exploits

If your app uses LLMs - like a chatbot or onboarding assistant - test them against known

exploits. The is a solid starting checklist so you don’t accidentally

expose your customers.

OWASP Top 10 for LLMs

4 Build security into your development process

Security shouldn’t be an afterthought. Shift left by adding checks early: follow security

checklists, look for typical flaws in code reviews, and enforce security checks on pull

requests.

https://www.aikido.dev/scanners/cloud-posture-management-cspm
https://github.com/aquasecurity/cloudsploit
https://aws.amazon.com/inspector/
https://help.aikido.dev/en/collections/3991752-setting-up-cloud-scanning
https://help.aikido.dev/doc/overview-aikido-docs/docCpLHBMatZ
https://owasp.org/www-project-top-10-for-large-language-model-applications/

